suppose a radioactive isotope has a half- life of 82 years. If we currently have 80kg, how much will be left after 25 years?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

suppose a radioactive isotope has a half- life of 82 years. If we currently have 80kg, how much will be left after 25 years?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

that's chemistry, hmm. is it a first level? second level?
it second level If you could help me with it thank you very much cause i'm stuck
halflife of 82 years, means after \[n \cdot 82\; \text{years}\] there is only an the \[2^n\]'th part left. So after x years there is \[\frac{80\text{kg} }{2^{x/82\;\text{years}}}\] left.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thank you my teacher told me to put it into the "pert" formula that's why i got confused could you help me put it into "pert" formula???? thanks
Sorry, I never heard of such a thing.
it's okay thank you

Not the answer you are looking for?

Search for more explanations.

Ask your own question