A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 5 years ago

Section 22: Concept Questions: how does the period of the uniform rod compare to the period of the simple pendulum for small oscillations?

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    How'd this question get overlooked??? for a simple pendulum of length d and mass m acted on by gravity it is easy to show (by breaking the force mg into radial and tangential components) that \[F _{t}=-mgsin(\theta)\]negative because it is a restoring force. Then\[a _{t} = \frac {F _{t}} {m}=-gsin(\theta)=d \alpha=d \frac {d^{2} \theta} {dt^{2}}=\]or\[\frac {d^{2} \theta} {dt^{2}}+\frac {g} {d}\sin(\theta)=0\]In the small angle approximation\[\sin(\theta)=\theta\]so\[\frac {d^{2} \theta} {dt^{2}}+\omega^{2} \theta=0\]which has the solution \[\theta=\theta _{\max}\cos(\omega t + \phi)\]and since \[\omega T=2 \pi\]\[T=\frac {2 \pi} {\omega}=2 \pi \sqrt {\frac {d} {g}}\] for a physical pendulum like a rod with CM a distance d from the pivot\[\tau _{P} = I _{P} \alpha=-mgdsin(\theta)\]or\[\frac {d^{2} \theta} {dt^{2}}=- \frac {mgd} {I _{P}}\sin(\theta)=-\frac {mgd} {I _{P}}\theta=-\omega^{2} \theta\]in the small angle approximation. Once again the solution is \[\theta=\theta _{\max}\cos(\omega t + \phi)\]and since \[\omega T=2 \pi\]\[T=\frac {2 \pi} {\omega}=2 \pi \sqrt {\frac {I _{P}} {mgd}}\]\[I _{p} = \frac {1} {3} mL^{2}= \frac {1} {3} m(2d) ^{2}=\frac {4} {3}md^{2}\]Substituting you can see that \[T _{rod}=\frac {2 \pi} {\omega}={2 \pi} \sqrt{\frac {4d} {3g}}=\frac {2} {\sqrt{3}}T _{pendulum}=1.15 \times T _{pendulum}\]

  2. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Of course in the small angle approximation\[T=\frac {2 \pi} {\omega}=2 \pi \sqrt {\frac {I _{P}} {mgd}}\]is a general solution, so you can just substitute in the I of any object including a simple pendulum \[md^{2}\]

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.