Determine the critical numbers of the given function and classify each critical point as a relative maximum, relative min or neither. f(t)= t/(t^2+3) I can get to t/(t^2+3) I need to solve for 0 to find the intervals of increase and decrease. I have forgotten how to solve for 0 with this problem.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine the critical numbers of the given function and classify each critical point as a relative maximum, relative min or neither. f(t)= t/(t^2+3) I can get to t/(t^2+3) I need to solve for 0 to find the intervals of increase and decrease. I have forgotten how to solve for 0 with this problem.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You got nowhere.
I know i need the 1st derivitive. Which I got t(2t) - (t^2+3)(1) / (t^2+3)^2 Is that much correct?
f'(x) = [ BT' - B'T ] / B^2

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

(t^2 +3)(1) - (t)(2t) ---------------- (t^2 +3)^2
any second opinions? :)
I agree, but _please_ use the equation-editor: \[f'(t) = \frac{t^2 + 3 - 2t\cdot t}{(t^2+3)^2}\]
t^2 +3 -2t^2 = 0 -t^2 +3 = 0 -t^2 = -3 t^2 = 3 t=+-sqrt(3)
I have that. I just have the top reversed.
and you were missing parentheses
I cant get that equation editor to work right .....
you can simply enclose the latex-code in \ [ and \ ].
latex is for painting houses ;)
amistre64 is right: \[f'(x)= \frac{3-t^2}{(t^2+3)^2}\]
something likethis? testing \[45\Omega -\sin(45) -\infty\]
I do better after a nap :)
sleep well :-)

Not the answer you are looking for?

Search for more explanations.

Ask your own question