in order to show the function "[(lnx)/(x^3)]" either converges or diverges by the integral test, do i just integrate the function and evaluate?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

in order to show the function "[(lnx)/(x^3)]" either converges or diverges by the integral test, do i just integrate the function and evaluate?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Integrate the function from 1 to infinity -- if the integral converges to a specific value, then the series does. (That's the basic idea of the integral test.)
got it.. thank you.. but i also have another question now... the book, it suggests that the given converges when compared to 1/(n^2)... why are they comparing to n^2 not n^3?
It's just for simplicity's sake; they could have picked 1/n^a with an 'a' greater than 1. Correct me if I'm wrong, but that's the direct comparison test, right?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

they have similar one to this problem with [(lnn)/(n^(3/2))] and they did "comparing the series to a convergent p-series"... Limit Comparison Test?
Yeah, they're basically saying that: 1.) If the function you want to evaluate is always less than 1/x^p (on the interval), and 1/x^p converges, then the function converges. 2.) If the function you want to evaluate is always less than 1/x^p (on the interval), and 1/x^p diverges, then the function diverges. When you evaluate 1/x^p and p>1, it converges. If p<1, it diverges.
so i can simply just look at the exponent of the given denominator and decide on whether it converges or diverges?
Not exactly, you can do that for a given function 1/x^p and see whether p is greater than or less than 1. If the function you're evaluating is ALWAYS less than a 1/x^p function on the interval, and you know if 1/x^p diverges or converges, then you can see if that function converges or diverges.
thx x]

Not the answer you are looking for?

Search for more explanations.

Ask your own question