Comparison test to determine if improper integral converges or diverges, (3+cos(x))/(x^3) from 1 to infinity

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Comparison test to determine if improper integral converges or diverges, (3+cos(x))/(x^3) from 1 to infinity

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

3+cos(x) varies between 4 and 2 as x approaches infinity. Since 4 >= 3+cos(x) always, the series of (3+cos(x))/x^3 will converge if 4/x^3 converges.
f(x) >= g(x) >= 0 f(x) = 1/x^2 g(x) = (3+cos(x))/(x^3) because of f(x) is larger for all values of g(x) and f(x) converges to \[\int\limits_{1}^{∞} 1/x^2 dx = \lim t \rightarrow∞ \int\limits_{1}^{t} 1/x^2 = {-1/x}\] from t to1 = 1
1/x^2 is not larger than (3+cos(x))(x^3) For quite a few values greater than 1.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Infinitely many in fact.
I dont understand how he got the 1/x^2 :P , also whats the difference if you select 2 instead of 4? say 2<=3+cos(x)?
You want to select something that is greater than the function you want to solve. If you can find something which converges but which is strictly larger than the function you're looking to solve, then you know that your function must also converge.
Oh ok, so when I get 4/x^3 do I have to evaluate the definite integral of that and find out if it converges or diverges?
Oops i meant (3+cos(x))/ x^2 which is greater then all values of (3+cos(x))/ x^2
***(3+cos(x))/ x^3 sorry
Ok nevermind, i got it, thanks!
Yep. the point is to find a function that is infinitely larger and if that function converges then the smaller one converges. However if the function ( f(x) for example) you test is divergent then f(x) >= g(x) >= 0 then g(x) can't be said is divergent. but if the function ( g(x) in this case) you test for is smaller and divergent then f(x) is divergent.
so what if the interval was not to infinity?
if the function is convergent on the interval and larger (meaning on discontinuities), the function is only to be said convergent on that interval.
No*

Not the answer you are looking for?

Search for more explanations.

Ask your own question