can anyone help me with proof that det(A)=det(-A) for nxn matrices?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

can anyone help me with proof that det(A)=det(-A) for nxn matrices?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You can find it in any Linear Algebra book
ok I guess I'll look harder
Which Linear Algebra book are you refering?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I know we are using the scaling method three times which gives us det(B)=s(det(A))
you can find all you need here: http://en.wikipedia.org/wiki/Determinant Just use \[\det (αA) = α^n \det (A) \] and you will see your conjecture does only hold for even numbers n
so does -1(det(A)=det(-A)
ahh yes...I get it now, I overlooked that formula, the exponent threw me off, thakns
there are many ways to prove it, depends on how the determinant is defined. In beginning linear algebra book, the determinant is not defined using the Leibniz formula. In that case, there is another proof

Not the answer you are looking for?

Search for more explanations.

Ask your own question