anonymous
  • anonymous
If the sun rises at 6 AM and is directly overhead at 12 noon, estimate the time (hour and minutes) when a 34-foot tree will have a 14-foot shadow.
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
At the point in time when the tree shadow is 14 feet in length, a light ray joining the top of the tree to that end of the shadow that is away from the base of the tree, makes an angle of \[\theta=\tan^{-1} {(14/34)} \] The following expression evaluates to the time day, AM, that the shadow will be 14 feet in length. \[12-{\theta \over ( \pi/2)}*6 = 10.508\] or 10:30 AM

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.