anonymous
  • anonymous
The half-life of cesium-137 is 30 years. Suppose we have a 120 mg sample. (a) Find the mass that remains after t years.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
These systems die off in proportion to themselves. So the rate of decay is given by \[\frac{dx}{dt}=-kx\] where k is positive. The negative sign ensures the rate is a decaying one. This is separable, so\[\frac{dx}{x}=-k dt \rightarrow \int\limits_{}{}\frac{dx}{x}=\int\limits_{}{}-kdt=\log x =-\]
anonymous
  • anonymous
log x = -kt +c
anonymous
  • anonymous
k= (ln 2) / 30

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Exponentiate both sides to get,\[x(t)=x_0e^{-kt}\]
anonymous
  • anonymous
Now, at time t=0, you have 120mg, so\[x(0)=120mg=x_0e^0=x_0\]
anonymous
  • anonymous
x(t) = 120 x e^((ln2)/30)
anonymous
  • anonymous
x(t) = 120 x e^-((ln2)/30)
anonymous
  • anonymous
Also, after 30 years, 1/2 the mass remains, so\[x(30)=60=120 e^{-30k} \rightarrow \frac{1}{2}=e^{-30k} \rightarrow k=-\frac{1}{30}\log \frac{1}{2}\]
anonymous
  • anonymous
i.e. \[k=\frac{\log 2}{30}\]So,\[x(t)=120e^{-\frac{\log 2}{30}t}\]
anonymous
  • anonymous
Thanks suzi20 and lokisan
anonymous
  • anonymous
Welcome. Fan us!

Looking for something else?

Not the answer you are looking for? Search for more explanations.