f(x) = x4 - 50x2 + 4 find the intervals on which f is increasing and decreasing. local min and max values. inflection points. intervals on which f is concave up and concave down.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

f(x) = x4 - 50x2 + 4 find the intervals on which f is increasing and decreasing. local min and max values. inflection points. intervals on which f is concave up and concave down.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1st and 2nd derivatives give you all that information
y' = 4x^3 -100x y'' = 12x^2
when y'=0 we get some critical points: y' = 4x^3 - 100x x(4x^2 - 100) = 0 x(2x-10)(2x+10) = 0 x = 0, x=5, x=-5 are all critical points to check <.......(-5)......(0).......(5).......>

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

y'' = 12x^2 12(0)^2=0 ; good candidate for inflection 12(-5)^2 = 12(25) which is (+), this is a MIN 12(5)^2 = 12(25) which is (+), this is ALSO a MIN <.......(-5).......(0)........(5).......> ------0++++(0)++++0-----> This thing is a big "W" looking graph with -5, 0, 5 being the low, high, low respectively
(-inf,0) concave up (0,inf) concave up (-5,5) concave down :) depends on where you lookat it from I suppose
dont try to make any sense outta me line graph; it messed up anywhoos :)
decreasing (-inf,-5) increaseing (-5,0) decreasing (0,5) increasing (5,inf)
any of this making sense?
f(-5) = (-5)^4 - 50(-5)^2 + 4 = (-5,-621) MIN f(0) = 0 - 0 + 4 = (0,4) MAX f(5) = (5)^4 - 50(5)^2 + 4 = (5,-621) MIN
that should be all the answers :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question