solve the first order differential equation: y-x(dy/dx)=(dy/dx)y^2e^y

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

solve the first order differential equation: y-x(dy/dx)=(dy/dx)y^2e^y

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Rearrange the equation to put it into a standard form,\[y-(x^2+y^2e^y)\frac{dy}{dx}=0\]which is in the form, \[M(x,y)+N(x,y)\frac{dy}{dx}=0\]We check to see if it's exact. We need to ensure,\[\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \rightarrow 1=1\]which is true. Now,
the potential function,\[\Psi(x,y)\]has that\[\frac{\partial \Psi}{\partial x}=M=y\]and\[\frac{\partial N}{\partial x}=N=-x^2-y^2e^y\]
Integrate the first partial:\[\Psi(x,y)=xy+c(y)\]and then take the partial derivative of this result with respect to y,\[\frac{\partial \Psi}{\partial y}=x+c'(y)\]so that we can identify it with \[\frac{\partial \Psi}{\partial y}=-x^2-y^2e^y\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Above you were saying \[\frac{∂N}{∂x} = 1\] while indeed it is \[-2x\]
(note a mistake above dN/dx should be dPsi/dy)
I mean where you say "We check to see if it's exact."
Oh - thanks nowhereman - typo with x^2...it should just be x
right :-)
great - now the whole thing's polluted.
\[\frac{\partial \Psi}{\partial y}=-(x+ye^y)=x+c'(y)\]
so that\[c'(y)=-2x-ye^y \rightarrow c(y)=-2xy-e^y(y^2-2y+2)\]where the last integral is doable using a few integration by parts. Sub. this back in for our solution Psi to give,\[\Psi(x,y)=xy-2xy-e^y(y^2-2y+2)\]\[=-xy-e^y(y^2-2y+2)+c=K\]
where c is the constant of integration, and K is a constant due to the fact that this function Psi satisfies\[\frac{d \Psi(x,y)}{dx}=\frac{\partial \Psi}{\partial x}\frac{dx}{dx}+\frac{\partial \Psi}{\partial y}\frac{dy}{dx}=\Psi_{x}+\Psi_y \frac{dy}{dx}=0\]which is the form of the equation we had to solve in the beginning.
Are you seeing any mistakes, nowhereman?
So \[\Psi(x,y)=-xy-e^y(y^2-2y+2)=c\]for c, some constant.

Not the answer you are looking for?

Search for more explanations.

Ask your own question