state whether a triangle formed with sides having the lengths named is acute, right, or obtuse. 1)3,4,6 2)9,12,15 3)5,6,7

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

state whether a triangle formed with sides having the lengths named is acute, right, or obtuse. 1)3,4,6 2)9,12,15 3)5,6,7

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I believe for this you'd use the pythagorean theorem...maybe? You take the two smallest sides and square them. So for part A, it'd be this: \[3^{2}+4^{2}=9+16=25\] Then take the largest side and square it to compare to the value found in the first part. So for this, it would be \[6^{2}=36\] Since 25 is smaller than 36, the third size is larger than expected in a right triangle. The larger a size is, the larger the angle opposite of it is, so the triangle in part A is a right triangle. If you repeat it for B, you get equal values by following the same steps. \[9^{2}+12^{2}=225\]\[15^{2}=225\]Since they are equal, this would be a right triangle. Following the same steps in part C, you should end up with this: \[5^{2}+6^{2}=61\]\[7^{2}=49\]Since the side is shorter than predicted for a right triangle, and since the angle shrinks as the length of the side gets smaller, you can expect it to be an acute triangle. ...at least, that's what I think. I haven't done this kind of math in years...
Oops! The triangle in part A is obtuse, my mistake.
thanks that was helpfull

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question