At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

\[3^{3}\div \sqrt{3^{5}}\]

You should use \[\sqrt{x} = x^{\frac{1}{2}}\]

how

use power rules, and \[\frac{x}{y} = x\cdot y^{-1}\]

You do have the same bases there, so all you need no know then is what \[x^a \cdot x^b\] is

oh, so it will be like \[3^{3-(1/5)}\] right?

nearly, but: \[\left( x^a \right) ^b = x^{a\cdot b} \]

\[\sqrt{3^{5}} = 3^{1/5} . so you get 3^{3}/ \]

you get 3^3 / 3^1/5

sqrt3

hence that will be \[3^{3-1/5}\]

that is exactly the mistake! \[ \sqrt{3^5} = \left( 3^5 \right)^{\frac{1}{2}}\]

oh no i think i get it wrong. that should be 3^5/2

hence, its \[3^{3-}\]

My answer is true SQRT(3)

its 3^3-5/2 = 3^1/2

And just for completeness, \[x^{\frac{1}{5}} = \sqrt[5]{x} \]

the answer is \[\sqrt{3}\] right?

duc, how do you get sqrt3?

I know the answere, but I dont know how to get to the answer

\[3^{3-5/2}\]

ok, guys, i appreciate you helping me, i just became your fan

ok, thankyou

No problem() good luck