anonymous
  • anonymous
Question in Finding rule for inverse function http://img190.imageshack.us/img190/9075/andysnap007.png
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You can find inverse functions using the definition. If f(x) is a function, and g(x) is its inverse, then\[f(g(x))=g(f(x))=x\]Now, you have\[f(x)=2x^{1/3}+8\]so that\[f(g(x))=2(g(x))^{1/3}+8=x\]Solving for g(x) gives,\[2(g(x))^{1/3}+8=x \rightarrow 2(g(x))^{1/3}=x-8\]
anonymous
  • anonymous
I haven't practiced inverse functions. Thanks for the definition. So what happens next? How do we get the rule?
anonymous
  • anonymous
Divide both sides by 2 and raise both sides to the power of 3,\[2(g(x))^{1/3}=x-8 \rightarrow (g(x))^{1/3}=\frac{x-8}{2} \rightarrow g(x)=\left( \frac{x-8}{2} \right)^3\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Just did it.
anonymous
  • anonymous
It's on your list too.
anonymous
  • anonymous
Thank you so much
anonymous
  • anonymous
:)
anonymous
  • anonymous
Become a fan ;)
anonymous
  • anonymous
okai :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.