The value of x? http://img641.imageshack.us/img641/2189/andysnap010.png

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The value of x? http://img641.imageshack.us/img641/2189/andysnap010.png

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I answered something before where I explained a solid method for solving this stuff...I'll try and find it. If you learn this method, you won't go wrong.
Read the part about finding the 'critical points'...near the end.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The answer's c btw
oh I'll check it out now
\[2x^2+x-1=0 \rightarrow x=-1, \frac{1}{2}\]are the points that partition your interval. So you have to take a test point from each of the following intervals \[-\infty < x <-1\]\[-10\]which is true, so the first interval is part of your solution; that is\[\left\{ x:x<-1 \right\}\]
Oh I'll check it out now

Not the answer you are looking for?

Search for more explanations.

Ask your own question