anonymous
  • anonymous
The hypotenuse of a right triangle is growing at a constant rate of a cm per second and one leg is decreasing at a constant rate of b cm per second. How fast is the acute angle between the hypotenuse and the other leg changing at the instant when both legs are 1 cm?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
we know that dr/dt = a; dy/dt = b; and at the moment both legs are equal we have x=1; y=1; and r=sqrt(2). not all that is pertinent tho :)
amistre64
  • amistre64
make that: dy/dt= -b the angle involved can be the tan(a) = y/x: tan(a) = y/x Dt(tan(a)) = Dt(y/x)
amistre64
  • amistre64
da/dt (sec^2(a)) = [ x(dy/dt) -(dx/dt)y ] / x^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
x(dy/dt) -(dx/dt)y da/dt = --------------- (xsec(a))^2
amistre64
  • amistre64
or should we do that with sin(a)? sin(a) = y/r... lets try that out... r(dy/dt) - y(dr/dt) da/dt = ---------------- x^2 cos(a)
amistre64
  • amistre64
x^2 should be r^2 .... my brain locked :)
anonymous
  • anonymous
yes thanks i think it should be sin! since we are given the opposite and the hyp
amistre64
  • amistre64
sqrt(2)(-b) - (1)(a) da/dt = --------------- sqrt(2)
amistre64
  • amistre64
i got 2 "a"s in that that are supposed to be different variables.... :)
amistre64
  • amistre64
d(theta)/dt = ......
amistre64
  • amistre64
x^2 + y^2 = r^2 (dx/dt)2x + (dy/dt)2y = (dr/dt)2r ; divide everything by 2 (dx/dt)x + (dy/dy)y = (dr/dt)r (dr/dt)r - (dy/dt)y (dx/dt) = --------------- x
amistre64
  • amistre64
dx/dt = (a)(sqrt(2)) - (-b)(1) ---------------- 1 Hows that look?
amistre64
  • amistre64
if we had the rates for "a" and "b" we'd be sittin' pretty :)
anonymous
  • anonymous
thanks! thats how i approached it too i just had some trouble with the simplification
amistre64
  • amistre64
dy/dy is sposed ta be dy/dt.... fatfingers...tiny little keyboard :)
amistre64
  • amistre64
I need to double check this... for x=1' y=1; r=sqrt(2) r(dy/dt) - y(dr/dt) da/dt = ---------------- x^2 cos(a) sqrt(2)(-b) - (a) ------------- (sqrt(2)/2) that should be the answer there....
amistre64
  • amistre64
1^2 does not equal 2 :)
amistre64
  • amistre64
2(sqrt(2))(-b)/(sqrt(2)) - 2a/sqrt(2) -2b - 2a/sqrt(2) -2b - 2a(sqrt(2))/2 -2b - a(sqrt(2)) = d(theta)/dt Check my math on that.... but that should be the simplified version of d(theta)
amistre64
  • amistre64
i beg of you ...PLEASE check my math :) if I get any more "idiot" braincells marching around in myhead, im gona scream :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.