• anonymous
A "little" integral problem, see the url for details:
OCW Scholar - Multivariable Calculus
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
DUMP IN THE PARAMERIZATION \[\int\limits_{0}^{2\pi}\] then take derivitive of r1 wrt t variable. then thats your dx and dy and turn the x n y in the top eq into cos sin of (t) then dot that with the dx and dy and do a single LINE integrl from 0 to 2pi. thats the easiest way i can explain it. GREENS theorem

Looking for something else?

Not the answer you are looking for? Search for more explanations.