how would I do the laplace transform of sin(2t)e^(5t)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

how would I do the laplace transform of sin(2t)e^(5t)?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

L(sin(2t)e^5t)=2/((s-5)^2+2^2) \[2 \over (s-5)^2+4\]
would you show me the steps, because I got the answer from a website, but I can't actually get there on my own with integration by parts. I keep on ending up with sin and cos on the top.
I see.. I actually just apply it to the formula, you can find it in any laplace table.. I will try the integration now

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thanks
any luck?
I guess.. just gimme a minute
thank you so much for your help
you need to do integration by parts twice for the integration \[I=\int\limits_{0}^{\infty}e ^{(5-s)t}\sin(2t)dt\]
\[\int\limits_{}^{}udv=uv-\int\limits_{}^{}vdu\] u=e^(5-s)t , dv=sin(2t) ... I think you know how to proceed. you will get another integration with cos this time, do integration by parts once more with the substitution for u and proceed.
then you can substitute the new result in the previous one to get the final integration.
I got all of that, but I still end up with wonky sin and cos stuff on the top, even when using the indicator function with integration by parts twice.
you're right.. the final step is the trick, if I may say, you will notice that the integral you got at last is the same one you have in the beginning, right?
let me write, directly the result of the two integrations by parts: (1) \[\int\limits_{0}^{\infty}e ^{(5-s)t}\sin(2t)dt=-1/2e ^{(5-t)s}\cos(2t)-1/2\int\limits_{0}^{\infty}e ^{(5-s)t}\cos(2t)dt\]
yep, that's what I got as well
I think that I also got the next part, but when I do the algebra for the last step and get I on its own again, I end up with those wonky sin and cos bits in the numerator.
now integrate the new integral: (2) \[\int\limits_{0}^{\infty}e ^{(5-s)t}\cos(2t)dt=1/2e ^{(5-s)t}\sin(2t)+\int\limits_{0}^{\infty}e ^{(5-s)t}\sin(2t)dt\]
now just substitute (2) in (1) to, and take the part with integration in one side..
try it out and see if it works with you
are you talking about the substitution in the end of infinity and zero?

Not the answer you are looking for?

Search for more explanations.

Ask your own question