lim (x^2) / (cos4x - cos9x) as x->0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

lim (x^2) / (cos4x - cos9x) as x->0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

what happens when you plug zero into the equation?
Indeterminate form. 0/0
right, so what can we do from here?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

L'Hospital Rule.
right, and what do we get from that?
Nvm. L'Hospital wont work in this situation.
why not?
It is still indeterminate. sin(0)=0
right, so we can do L'Hopitals rule again
True. I forgot about it.
after the second derivative you are left with 2 in the numerator, and cosines in the denominator, so you should be good from there
when you do L'Hopitals rule again rather
Do you have an answer?
yes 0.0307692
yes, 0.030769
also 2/65

Not the answer you are looking for?

Search for more explanations.

Ask your own question