use power reduction formula to rewrite the equation in terms of cosine: cos^2x sin^4 x

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

use power reduction formula to rewrite the equation in terms of cosine: cos^2x sin^4 x

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Do you have to derive each before you can use them?
i dont think so
Okay. Well, \[\cos^2 x = \frac{1+\cos 2 x}{2}\]and\[\sin^4 x = \frac{3-4\cos 2 x +\cos 4 x }{8}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You just have to multiply the two.
All your entries will be in terms of cosine.
Are you okay to take it from here?
i get it now thank you very much
i have trouble multiply these two together, can you help me?
Yes, just give me a while. I need to eat...starving.
\[\frac{\left(1+\cos 2x \right)}{2}.\frac{\left( 3-4\cos 2x + \cos 4x \right)}{8}\] \[=\frac{1}{16}\left(1+\cos 2x \right)\left( 3-4\cos 2x + \cos 4x \right)\]\[=\frac{1}{16}(3-4\cos 2x + \cos 4x+3\cos 2x -4\cos^2 2x\]\[+\cos 2x \cos 4x)\]\[=\frac{1}{16}(3-\cos 2x +\cos 4x (1+ \cos 2x)-4\cos ^2 2x)\]
You can keep going to reduce the square on cos^2(2x) by noting:\[\cos^2 \theta -\sin^2 \theta =\cos 2 \theta \rightarrow 2\cos^2 \theta -1= \cos 2 \theta\]so\[\cos^2 \theta = \frac{\cos 2 \theta +1 }{2}\]Use \[\theta = 2x\]then\[\cos^2 \theta = \cos^2 2x = \frac{\cos 4x+1}{2}\]which you can substitute back in. Then you have\[\frac{1}{16}(3-\cos 2x + \cos 4x (1+\cos 2x)-4.\frac{\cos 4x+1}{2})\]\[=\frac{1}{16}(1-\cos 2x + \cos 4x (\cos 2x -1))\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question