anonymous
  • anonymous
s
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
sorry, find the intergal of \[\sqrt{16-^{x}}\]
anonymous
  • anonymous
Again sorry, \[\sqrt{16-x ^{2}}\]
anonymous
  • anonymous
Okay let's re-write it in a better form first:\[\int\limits_{}^{}\sqrt{16 - x^2}\] Let's integrate using trigonometric substitution and you'll have the following: we know that \[ x = asin \theta\] and a in this place is 4 ^_^ so: Step one : \[x = 4\sin \theta\], between \[-\pi / 2 < \theta \le \pi/2\] Step 2, substitute x in the equation: \[\sqrt{16 - x^2} = \sqrt{16 - (4\sin \theta)^2} = \sqrt{16(1-\sin^2 \theta)} \]\[= \sqrt{16\cos^2 \theta} = \left| 4 \cos \theta \right| = 4\cos \theta\] Step 3, find dx, we know that x = 4sin (theta) now so : \[dx = 4\cos \theta d \theta\] Step 4, substitute all of this in the integral and you'll get : \[\int\limits_{}^{}\sqrt{16 - x^2} dx = \int\limits_{}^{} (4\cos \theta)(4\cos \theta) d \theta\] \[= \int\limits_{}^{} 16\cos^2 \theta d \theta = 16\int\limits_{}^{}\cos^2 \theta d \theta\] \[= 16 \int\limits_{}^{} 1/2(1+\cos 2 \theta) d \theta\] \[= 16/2 \int\limits_{}^{}1 + \cos 2 \theta d \theta = 8 \int\limits_{}^{}1 + \cos 2 \theta d \theta\] now use u substitute for 2 (theta) and you'll get : \[u = 2 \theta , du = 2 d \theta\] \[= 8/2\int\limits_{}^{} 1 + \cos u du = 4\int\limits_{}^{} 1 + cosu du\] \[= 4 [ u + sinu ] + c = 4[2 \theta + \sin2\theta] + c\] now the last step is to write theta in terms of x , we already know that: \[x = 4\sin \theta\] so : \[\sin \theta = x/4\] and \[\theta = \sin^{-1} (x/4)\] so: \[\int\limits_{}^{}\sqrt{16 - x^2 }dx = 4[2\sin^{-1} (x/4) + \sin (2x/4)] + c\] \[= 8\sin^{-1} (x/4) + 4\sin(x/2) + c\] Correct me if I'm wrong ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
is it clearer now ice man? :)
anonymous
  • anonymous
Yupp, Thank you!
anonymous
  • anonymous
np ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.