anonymous
  • anonymous
The parametric representation r(s,t)=2tcos(s)i + 2tsin(s)j + tk for s∈R and t∈R corresponds to what surface? What is mean by s∈R and t∈R?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
R means the set of all real numbers.
anonymous
  • anonymous
i see, thanks. For this question, is it starts with x=2tcos(s), y=2tsin(s),z=t? what are the next steps?
anonymous
  • anonymous
i see, thanks. For this question, is it starts with x=2tcos(s), y=2tsin(s),z=t? what are the next steps?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
give me a minute
anonymous
  • anonymous
ok.\[t=z \implies x^2+y^2+z^2=5z^2 \implies x^2+y^2=\]. your aim is to find a relationship between x,y and z, and get rid of all the parameters.. \[x ^{2}+y ^{2}+z ^{2}=4t^2+\cos^2t+4t^2\sin^2t+t^2=4t^2(\cos^2t+\sin^2t)+t^2\] that's\[x^2+y^2+z^2=5t^2\] , but t=z, \[z=t \implies x^2+y^2+z^2=5z^2 \implies x^2+y^2=4z^2\]
anonymous
  • anonymous
\[x^2+y^2=4z^2 \] is cone ,, so the parametric equations are correspondent to a circular cone
anonymous
  • anonymous
The selections of answer are as below: a)\[4z^{2}=x ^{2}+y^{2}\] b) \[2x + 2y + z = 5\] c) \[z = 4 y ^{2}\] d) \[x ^{2} + y ^{?} = 4\] e) \[4z ^{2} = x ^{2} + y ^{2}\] Why are u using x ^{2}+y^{2}\] + z2 = \[5z^{2}?\] how we know it is\[5z^{2}?\]
anonymous
  • anonymous
The selections of answer are as below: a)\[4z^{2}=x ^{2}+y^{2}\] b) \[2x + 2y + z = 5\] c) \[z = 4 y ^{2}\] d) \[x ^{2} + y ^{?} = 4\] e) \[4z ^{2} = x ^{2} + y ^{2}\] Why are u using x ^{2}+y^{2}\] + z2 = \[5z^{2}?\] how we know it is\[5z^{2}?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.