anonymous
  • anonymous
compute the indefinite integral. (sin 2x)^2 (cos2x)^2 dx please show me in a detail process.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nowhereman
  • nowhereman
Substitute 2x, write cos in terms of sin and then use formula for powers of sin.
anonymous
  • anonymous
\[x^2 (\cos 3x/3)-\int\limits (-\cos3x/3)(2x) \] something like that right??
anonymous
  • anonymous
wait sorry i was working on a different problem, can you please show me the steps to the previous problem...(sin 2x)^2 (cos2x)^2 dx

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int\limits (\sin2x)^{2} (\cos2x) ^{2} dx \]
anonymous
  • anonymous
\[\int\limits (\sin2x)^2(\cos2x)^2dx= \int\limits [(\sin2x)(\cos2x)]^2dx\] now use this trig identity: \[\sin(2u)=2\sin(u)\cos(u)\] in our case u=2x , so... \[\sin(4x)=2\sin(2x)\cos(2x)\rightarrow \frac{1}{2}\sin(4x)=\sin(2x)(\cos(2x)\] so... \[\int\limits\limits [(\sin2x)(\cos2x)]^2dx= \int\limits [\frac{1}{2}\sin(4x)]^2dx \] \[\rightarrow \int\limits \frac{1}{4}(\sin(4x))^2dx\] We have to use another trig identity: \[\cos(2u)=1-2(\sin(u))^2\rightarrow 2(\sin(u))^2=1-\cos(2u)\] \[\rightarrow (\sin(u))^2=\frac {1-\cos(2u)}{2}\] in our case u=4x, so... \[(\sin(4x))^2=\frac {1-\cos(8x)}{2}\] Now our integral becomes: \[\int\limits \frac{1}{4}[\frac{1}{2}-\frac{\cos(8x)}{2}]dx \rightarrow \frac {1}{8} \int\limits dx- \frac {1}{8} \int\limits \cos(8x)dx\] \[Thus:\frac {1}{8} \int\limits\limits dx- \frac {1}{8} \int\limits\limits \cos(8x)dx= \frac{x}{8}-\frac {\sin(8x)}{64}+C\]
anonymous
  • anonymous
thanks!
anonymous
  • anonymous
no problem
anonymous
  • anonymous
can you help me with another problem ?
anonymous
  • anonymous
sure
anonymous
  • anonymous
\[\int\limits_{0}^{8} (x+e^x)^2 dx \] use the midpoint rule with n =4 to appoximate this integral.
anonymous
  • anonymous
I thought I already did this....?
anonymous
  • anonymous
and what is the error in the approximation.
anonymous
  • anonymous
no lol
anonymous
  • anonymous
wait actually nvm, i got this question. but what about this one: \[\int\limits x^2 \sin(3x)dx \] compute the integral .
anonymous
  • anonymous
Use integration by part twice and the use u substitution: \[\int\limits\limits\limits f(x)g(x)dx= F(x)g(x)-\int\limits\limits\limits F(x)g'(x)dx\] Where F(x) \in the antiderivative of f(x) \[\int\limits x^2\sin(3x)dx \rightarrow \] \[f(x)=\sin(3x), F(x)=-\frac {\cos(3x)}{3}, g(x)=x^2, g'(x)=2x\] \[-\frac{1}{3}x^2\cos(3x)+\frac{2}{3}\int\limits xcos(3x)dx\] \[f(x)=\cos(3x), F(x)=\frac{\sin(3x)}{3}, g(x)=x, g'(x)=1\] \[-\frac{1}{3}x^2\cos(3x)+\frac{2}{9}xsin(3x)-\frac{2}{9} \int\limits \sin(3x)dx\] \[u=3x, du=3dx, \frac{du}{3}=dx\] \[-\frac{1}{3}x^2\cos(3x)+\frac{2}{9}xsin(3x)-\frac{2}{27} \int\limits\limits \sin(u)du\] \[-\frac{1}{3}x^2\cos(3x)+\frac{2}{9}xsin(3x)+\frac{2}{27} \cos(u)+C \rightarrow u=3x\] \[-\frac{1}{3}x^2\cos(3x)+\frac{2}{9}xsin(3x)+\frac{2}{27} \cos(3x)+C\]
anonymous
  • anonymous
omg thanks you are a big help!
anonymous
  • anonymous
your welcome
anonymous
  • anonymous
one last question.. consider the integral \[\int\limits_{0}^{1} e ^{-x} dx \] suppose that we want to approximate this integral using the trapezoid rule. if we want our approximation to have an error less than 10^-3, how large should we take n??
nowhereman
  • nowhereman
the error term for the trapezoidrule for function f over interval [a,b] is \[-\frac{(b-a)^3}{12}f''(ζ) = -\frac{1}{12n^3}e^{-ζ} \] so the absolute error is at most \[\frac{1}{12n^2}\] if you sum it over all the n intervals. So you want \[10^{-3} \geq \frac{1}{12n^2} ⇔ n \geq \sqrt{\frac{10^3}{12}}\approx 9.1287\] So n must be greater or equal to 10.

Looking for something else?

Not the answer you are looking for? Search for more explanations.