anonymous
  • anonymous
compute the indefinite integral. \[\int\limits (dx) /(x^2+4)^{5/2} \]
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I don't have heaps of time, but I can get you started. Make a substitution,\[x=2\tan \theta\]Then\[dx=2\sec ^2 \theta d \theta\]and your integral becomes,\[\int\limits_{}{}\frac{dx}{(x^2+4)^{5/2}}=\int\limits_{}{}\frac{2\sec^2 \theta }{(4+4\tan^2 \theta)^{5/2}}d \theta =\int\limits_{}{}\frac{2\sec^2 \theta }{2^5(1+\tan^2 \theta)}d \theta\]\[=\int\limits_{}{}\frac{2\sec^2 \theta }{2^5(\sec^2 \theta)^{5/2}}d \theta=\frac{1}{2^4}\int\limits_{}{}\frac{d \theta }{\sec^3 \theta}=\frac{1}{2^4}\int\limits_{}{}\cos^3 \theta d \theta\]
anonymous
  • anonymous
The denominator on the third integral in the firs line should be raised to the power of 5/2
anonymous
  • anonymous
You can solve this now using a reduction formula on cos^3(theta), or by using integration by parts on cos^3(theta) a couple of times. Once you have your answer, remember to undo your substitution; that is\[\theta = \tan^{-1}\frac{x}{2}\]and add a constant. If I didn't have to rush off, I'd finish it. I'll look in later to see how you went. Good luck :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[{1\over12 }\left( \dfrac {x}{(x^2+4)^{3/2}}+\tan^{-1}(\dfrac{x}{2})\right)\]
anonymous
  • anonymous
thank you so much guys!

Looking for something else?

Not the answer you are looking for? Search for more explanations.