anonymous
  • anonymous
compute the indefinite integral. \[\int\limits (dx) /(x^2+4)^{5/2} \]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I don't have heaps of time, but I can get you started. Make a substitution,\[x=2\tan \theta\]Then\[dx=2\sec ^2 \theta d \theta\]and your integral becomes,\[\int\limits_{}{}\frac{dx}{(x^2+4)^{5/2}}=\int\limits_{}{}\frac{2\sec^2 \theta }{(4+4\tan^2 \theta)^{5/2}}d \theta =\int\limits_{}{}\frac{2\sec^2 \theta }{2^5(1+\tan^2 \theta)}d \theta\]\[=\int\limits_{}{}\frac{2\sec^2 \theta }{2^5(\sec^2 \theta)^{5/2}}d \theta=\frac{1}{2^4}\int\limits_{}{}\frac{d \theta }{\sec^3 \theta}=\frac{1}{2^4}\int\limits_{}{}\cos^3 \theta d \theta\]
anonymous
  • anonymous
The denominator on the third integral in the firs line should be raised to the power of 5/2
anonymous
  • anonymous
You can solve this now using a reduction formula on cos^3(theta), or by using integration by parts on cos^3(theta) a couple of times. Once you have your answer, remember to undo your substitution; that is\[\theta = \tan^{-1}\frac{x}{2}\]and add a constant. If I didn't have to rush off, I'd finish it. I'll look in later to see how you went. Good luck :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[{1\over12 }\left( \dfrac {x}{(x^2+4)^{3/2}}+\tan^{-1}(\dfrac{x}{2})\right)\]
anonymous
  • anonymous
thank you so much guys!

Looking for something else?

Not the answer you are looking for? Search for more explanations.