anonymous
  • anonymous
I don't suppose anyone could assist me with the following problem (noted in the url): http://1337.is/~gaulzi/tex2png/view.php?png=201103301610252648.png and if you are familiar with latex, then u can use this http://1337.is/~gaulzi/tex2png to convert from tex2png... if you like that better
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What is the path C1?
anonymous
  • anonymous
the parametrization that is given, is used for the path C1
anonymous
  • anonymous
oh..ok, overlooked it, sorry...^-^

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
what course is it?
anonymous
  • anonymous
im not sure what the english name for it is but if i translate it correctly it is Mathematical Analysis II
anonymous
  • anonymous
ok, where are you? It has been a while since I did path integral
anonymous
  • anonymous
do you know the conservative vector field?
anonymous
  • anonymous
well I think I can do it, but you need to know the "fundamental theorem of line integrals"
anonymous
  • anonymous
let \[P=2xsiny \implies \partial P/\partial y=2xcosy\] and \[Q=x^2cosy-3y^2 \implies \partial Q/\partial x=2xcosy\] we can see that the partial derivatives are the same, which means that the function is conservative (by the test of a conservative field), and there exist, by definition a potential function Φ such that: \[\partial \phi/ \partial x =P \rightarrow (1) , \partial \phi/\partial y = Q \rightarrow (2)\]
anonymous
  • anonymous
integrate (1) with respect to x, you get: \[\phi(x,y)=x^2siny+g(y) \rightarrow(3)\] to find g(y), we differentiate equation (3) w.r.t y, we get: \[\partial \phi/ \partial y=x^2cosy +g'(y) \rightarrow (4)\]but this should be the same as Q (as we said above), that's \[x^2cosy+g'(y)= Q =x^2cosy -3y^2 \implies g'(y)=-3y^2\] then g(y)= -y^3+c ( we can take c to be zero ) substitute g(y)=-y^3 in equation (3), \[\phi(x,y)=x^2siny-y^3\]
anonymous
  • anonymous
from r(t) in your question we have two parameter functions, x(t)=tcost , y(t)=t^2sint.. by the fundamental theorem of line integrals, the value of the integral I=Φ(B)-Φ(A), where in our case, B=(x(2pi),y(2pi)), A(x(0), y(0)) \[x(2\pi)=2\pi , y(2\pi)= 0 , x(0)=0, y(0)=0\] \[Φ(2\pi,0)= 0 , Φ(0,0)=0\] the value of the line integral over C1 is \[Φ(2\pi,0)-Φ(0,0)=0\]
anonymous
  • anonymous
the result does not seem right to me :( .. but that's what I got

Looking for something else?

Not the answer you are looking for? Search for more explanations.