how do i find the intersections of the functions f(x)=e^(-x/2) and g(x)=1+sin(2x)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

how do i find the intersections of the functions f(x)=e^(-x/2) and g(x)=1+sin(2x)?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Set the two functions equal to each other and solve for the variable to find that particular intersection point. For this one, it might be easier to do with a graphing calculator and using the "Intersect" function.
if you set them equal and try to solve you bury the variable in the second function behing more functions making even more difficult. If I use the graphing calculator method will it give me an accurate enough interval for an integral?
Yes, using a graphing calculator to find the intersection point, and keeping about 3 or 4 decimal places, is usually enough to carry out definite integrals. That's actually how they'd expect you do to a problem like this on a real calculus exam.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

okay i was just over worried about being precise i guess

Not the answer you are looking for?

Search for more explanations.

Ask your own question