anonymous
  • anonymous
Suppose that the height (at the shoulder) of adult African bull bush elephants is normally distributed with μ = 3.25 meters and σ = .2 meter. The elephant on display at the Smithsonian Institution has height 4 meters and is the largest elephant on record. What is the probability that an adult African bull bush elephant has height 4 meters or more?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Have you learned about z-numbers and tables?
anonymous
  • anonymous
Melli, Melli...wait until you know how to solve one of these, and I'm sure it will make the rest easier. Then, if you get stuck on those, then put them up here - but first try! :)
anonymous
  • anonymous
Yes, but I"m still a little confused.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
These are the only one's that I have trouble with. I can do the % ones though.
anonymous
  • anonymous
Because for the % questions I can use invnorm on the calc.
anonymous
  • anonymous
Okay, so you know that here, z = (x-μ)/σ. Now, you can plug in mu and sigma, but your x is simply going to be the value you evaluate (in this case, 4). So, you can easily find the probability of anything LESS than 4 (let's call it "p")using the tables or your calculator, but you know that the maximum probability of anything is 1, so the probability of something greater than 4 is 1-p.
anonymous
  • anonymous
My answer is 3.75. I did z= (4-3.45)/(.2)
anonymous
  • anonymous
However, that is not the correct answer. :/
anonymous
  • anonymous
Probabilities can't be greater than 3.75. :/
anonymous
  • anonymous
***sorry, can't be greater than 1, typo. Double check your steps.
anonymous
  • anonymous
And, you happened to plug in 3.45, when the mean was in fact 3.25.
anonymous
  • anonymous
It was a typo. Re-checking my equation right now.

Looking for something else?

Not the answer you are looking for? Search for more explanations.