The lifetime of a star is rougly inversly propotional to the cube of its mass. Our sun, which has a mass of 1 solar mass, will last for approxamatly 10 billion years. How long will a star that is half as massive as the sun last?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The lifetime of a star is rougly inversly propotional to the cube of its mass. Our sun, which has a mass of 1 solar mass, will last for approxamatly 10 billion years. How long will a star that is half as massive as the sun last?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Let T be the lifetime and M the mass. You're told that the lifetime, T, is roughly inversely proportional to the cube of the mass, M; that is,\[T \approx \frac{k}{M^3}\]where k is some constant of proportionality. We can compare, then, the lifetime of two stars as, \[\frac{T_2}{T_1}\approx \frac{\frac{k}{M_1^3}}{\frac{1}{M^2_3}}=\frac{M_1^3}{M^3_2}\]From the information, you have that the mass of the other star will be \[M_{Star}=\frac{1}{2}M_{sun}\]so,\[\frac{T_{Star}}{T_{sun}}\approx \frac{M^3_{sun}}{(\frac{M_{sun}}{2})^3}=2^3=8 \]So the lifetime of the star is approximately,\[T_{Star}\approx 8T_{sun}=80 \times 10^9yr\]that is, 80 billion years. Larger stars consume their fuel faster than smaller stars, so this result makes sense.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question