A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 5 years ago

The lifetime of a star is rougly inversly propotional to the cube of its mass. Our sun, which has a mass of 1 solar mass, will last for approxamatly 10 billion years. How long will a star that is half as massive as the sun last?

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Let T be the lifetime and M the mass. You're told that the lifetime, T, is roughly inversely proportional to the cube of the mass, M; that is,\[T \approx \frac{k}{M^3}\]where k is some constant of proportionality. We can compare, then, the lifetime of two stars as, \[\frac{T_2}{T_1}\approx \frac{\frac{k}{M_1^3}}{\frac{1}{M^2_3}}=\frac{M_1^3}{M^3_2}\]From the information, you have that the mass of the other star will be \[M_{Star}=\frac{1}{2}M_{sun}\]so,\[\frac{T_{Star}}{T_{sun}}\approx \frac{M^3_{sun}}{(\frac{M_{sun}}{2})^3}=2^3=8 \]So the lifetime of the star is approximately,\[T_{Star}\approx 8T_{sun}=80 \times 10^9yr\]that is, 80 billion years. Larger stars consume their fuel faster than smaller stars, so this result makes sense.

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.