use the differentials to approximate [9.02]to power 1.5,plus [1divide by [9.02]raised to power 0. 5]-26

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

use the differentials to approximate [9.02]to power 1.5,plus [1divide by [9.02]raised to power 0. 5]-26

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

please use equation...
Assuming you mean,\[(9.02)^{3/2}\left( \frac{1}{(9.02)^{1/2}} \right)^{-26}\]you can consider the following. The differential of y (i.e., dy) is approximately equal to the exact change in y (i.e., Δy), provided that the change in x (Δx) is relatively small. Since for small changes in x,\[\frac{\Delta y}{\Delta x}\approx \frac{dy}{dx} \rightarrow \Delta y \approx \frac{dy}{dx}\Delta x\]you can approximate a small change in a function y as,\[y+\Delta y \approx y + \frac{dy}{dx}\Delta x\]The function you need to consider is \[y=x^{1/2}\]since you're looking at combinations involving \[9.02^{1/2}\]
For \[x=9 \rightarrow (9)^{1/2}=3\]which is easy. But you'll notice that x=9.02 is the old x-value plus a *small* change, so we can approximate the actual value of the function by the linear approximation we derived above:\[(x+\Delta x)^{1/2} \approx x^{1/2}+ \frac{1}{2}x^{-1/2}\Delta x\]Our x-value is 9 and the small change is 0.02. So,\[(9+0.02)^{1/2} \approx (9)^{1/2}+\frac{1}{2} (9)^{-1/2}(0.02)=3+\frac{1}{300}=\frac{901}{300}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You can now use this result in your equation:\[(9.02)^{3/2}\left( \frac{1}{(9.02)^{1/2}} \right)^{-26} \approx \left( \frac{901}{300} \right)^3\left( \frac{1}{\left( \frac{900}{300} \right)} \right)^{-26}\]\[=\left( \frac{901}{300} \right)^3\left( \frac{901}{300} \right)^{26}=\left( \frac{901}{300} \right)^{29}\]
If you have any difficulty with what I've written, let me know.
Incidentally, to nine significant figures, your original expression gives,\[7.08752811 \times 10^{13}\]while the approximate solution found yields,\[7.087654705 \times 10^{13}\]You can see that they're pretty close.

Not the answer you are looking for?

Search for more explanations.

Ask your own question