anonymous
  • anonymous
a rectangular water tank has a length 20 ft, width 10 ft , and depth 15 ft . if the tank is full , how much work does it take to pump all the water out (using calculus)
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
so this is another combination of mathematical calculus and the physical energy problem.
anonymous
  • anonymous
this one is much easier than the previous one, don't you think so? because there's no dripping water here~! :)
anonymous
  • anonymous
but im still confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
this is what i got 62.4(density of water)(200,the volume) integral 15-h limit 15 to zero
anonymous
  • anonymous
the measurement is ft , not meter.
anonymous
  • anonymous
i know that why u use 62.4 as the density
anonymous
  • anonymous
youd better change to ISU, more convenient to calculate, as 1 g/cm^3 the density of the water/
anonymous
  • anonymous
im sorry i had to go to bed, its midnight here
anonymous
  • anonymous
oh okay thank you for ur help
anonymous
  • anonymous
anwar di u think u can help me
anonymous
  • anonymous
Is the water leaving the tank from the top or the bottom? I'll assume it's leaving from the bottom. W = F * d; draw the tank with the dimensions. Find the density of an infinitely thin "slab" of water. Its volume is going to be 20*10*dy = 200dy. The force is going to be the volume times the density, so 200dy * 62.4 = 12480dy. The distance that this slab is going to have to travel to leave the tank is y, so the work done in moving that slab is 12480ydy. Sum all the work done by all the slabs with... \[\int\limits_{0}^{15}12480ydy\] I got 1404000 foot-pounds of work.
anonymous
  • anonymous
thank u for coming to the rescue , but the answer is 220,500 ft lb
anonymous
  • anonymous
Integrate 12480ydy from 0 to 15 is what I meant to say...
anonymous
  • anonymous
is the distance 15-y
anonymous
  • anonymous
The distance would be 15 - y if the water was leaving from the top... I don't think that wouldn't get the amount of work to be 220500, though...
anonymous
  • anonymous
it just says how much work would it take to pump the water, it doesn"t say top and bottom
anonymous
  • anonymous
Well, for water to be pumped out of a tank it needs to be pumped out from somewhere. The water needs to move to a part of the tank to be pumped out.
anonymous
  • anonymous
here what I have, I am not sure about it though.. haven't done physics in a while: we have the following formula: \[W=\int\limits_{v_i}^{v_f}pdv\] where p is pressure of water (can be found known depth and temperature of water), vi and vf are the initial and final volume respectively (both known)
anonymous
  • anonymous
knowing depth..*
anonymous
  • anonymous
so it doesn't matter if we use y or 15-y to represent the distance
anonymous
  • anonymous
well we have the initial volume=20*10*15, final volume=0.. we will get a negative result for the work.
anonymous
  • anonymous
if we use 15-y?
anonymous
  • anonymous
hey im a little confused. can someone please explain to me how the distance become 15-y
anonymous
  • anonymous
I have no idea why my answer is incorrect. If you draw the height of the tank and pick an arbitary point along the height, the distance between the top of the tank and that point is 15 - y.
anonymous
  • anonymous
and when is it just y
anonymous
  • anonymous
Distance betwen the arbitary point and the bottom of the tank.
anonymous
  • anonymous
but in the triangle is the top is just y, and the bottom is 15-y
anonymous
  • anonymous
Triangle?
anonymous
  • anonymous
this is another question , when u slice a triangle and want to use similar triangles the top portion is y and the bottom half is 15-y ,( this just an example)
anonymous
  • anonymous
Yes, I suppose you could think of it that way if you positioned the tank such that the x-axis was the top of the tank and 15 feet below that is the bottom of the tank.
anonymous
  • anonymous
k ty
anonymous
  • anonymous
hey i have a question can i ask

Looking for something else?

Not the answer you are looking for? Search for more explanations.