anonymous
  • anonymous
Use logarithmic differentiation to find the derivative of the function. y = x^(cos x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Take the logarithm of both sides to get,\[\log y = \log x^{\cos x} \rightarrow \log y = \cos x \log x\]Then, taking the derivative of both sides, you get\[\frac{d}{dx}\log y=\frac{d}{dx}\cos x \log x \rightarrow \frac{d \log y}{dy}\frac{dy}{dx}=\frac{d}{dx}\cos x \log x\]\[\rightarrow \frac{1}{y}\frac{dy}{dx}=\cos x \frac{1}{x}+\log x (-\sin x)\]\[\rightarrow \frac{dy}{dx}=y(\frac{\cos x}{x}-\sin x \log x)\]\[=x^{\cos x}(\frac{\cos x }{x}-\sin x \log x)\]
anonymous
  • anonymous
log == ln
anonymous
  • anonymous
omg ty!!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
you're welcome
anonymous
  • anonymous
become a fan ;)
anonymous
  • anonymous
is that diff eq?
anonymous
  • anonymous
Those sort of problems are part of calc2
anonymous
  • anonymous
really? ive never heard of logarithmic diferentiation O.o

Looking for something else?

Not the answer you are looking for? Search for more explanations.