I have some problem with integration techniques. how can you integrate e^(x^2)*x? I tried integration by parts but it does not work. Also I have a problem integrating (2+x^3)^(1/2)*x^2. Thanks!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I have some problem with integration techniques. how can you integrate e^(x^2)*x? I tried integration by parts but it does not work. Also I have a problem integrating (2+x^3)^(1/2)*x^2. Thanks!

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

For the first one, I think you want to try a u-substitution with u=x^2. For the second, I think you should try a u-sub with u=2+x^3.
(S) x e^x^2 dx if u = x^2 then du = 2x dx... dx = du/2x we already have an "x" in the integral, we need a 2 in there without changing the value.. so multiply the whole thing by 2/2. (1/2) (S) 2x e^x^2 dx (1/2) e^x^2 +C
yeah as Quantum said, both can be integrated using substitution technique.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

(S) (2+x^3)^(1/2)*x^2 dx if u = 2+x^3 ; then du = 3x^2 we need a 3x^2 in the integral to work with; so multiply by 3/3 and just set the (1/3) outside. (1/3) (S) 3x^2 (2+x^3)^1/2 dx 1 2(2+x^3)^(3/2) +C -- ------------- 3 3 (2/9) (2+x^3)^(3/2) + C looks about right...

Not the answer you are looking for?

Search for more explanations.

Ask your own question