anonymous
  • anonymous
Hey - need some help deriving trig. identities from Euler's formula.
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
what was eulers formula?
anonymous
  • anonymous
e^(ix) = cosx + isinx
anonymous
  • anonymous
So would it then be true that e^(i2x)= (cosx + isinx)^2 as well as e^(i2x) = cos(2x) + isin(2x) ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes.
anonymous
  • anonymous
So e^(-i2x)=cos(2x)-isin(2x)=(cos(x)-isin(x))^2?
anonymous
  • anonymous
The problem I have is that it seems that when I add e^(i2x)+e^(-i2x), I get 2cos2x=2cos^2(x) ! Obviously I'm going wrong somewhere.
anonymous
  • anonymous
cos(2x) = the real part of (cos(x)-isin(x)^2
anonymous
  • anonymous
Nevermind, I think I figured it out.
anonymous
  • anonymous
Err the real part of (cos(x)+isin(x))^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.