anonymous
  • anonymous
Solve the following set of homogeneous equations by Gauss-Jordan reduction of the matrix of coefficients (without the column of zeros from the right-hand side. 5x+5y-5z=0 3x+4y-7z=0 2y-8z=0 -2y-3y+6z=0 I know to do Gauss-Jordan reduction for three equations, but not four. How do I do this?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
It should work for a square matrix of any order n x n, just make sure to end up with the fourth order identity matrix on the left hand side (1's along the main diagonal). :)
anonymous
  • anonymous
I write the matrix out: 5 5 -5 0 3 4 -7 0 0 2 -8 0 -2 -3 6 0 So do I just put the zeros on the left side as well?
anonymous
  • anonymous
Hmm...sorry, I misread the question! At a cursory glance, what could you achieve by having 4 equations with 3 unknowns? The very structure of the question is confusing to me...I'm pretty sure that the number of equations has to equal the number of unknowns to solve using Gauss-Jordan elimination; otherwise you'd have to make an augmented matrix.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yup that's why I'm confused as well! I can't seem to find any examples online either.
anonymous
  • anonymous
I think you are correct; put the constants as a fourth column on the left hand side and when you get the inverse on the right hand side, you'll just separate the right-most column as new coefficients.
anonymous
  • anonymous
Found a FANTASTIC resource: http://mathrefresher.blogspot.com/2007/04/gauss-jordan-elimination.html :)
anonymous
  • anonymous
I'm still trying to figure out how to get the matrix in the right form so can find what x y z are? :(
anonymous
  • anonymous
I already know how to the method on the page you provided, but I can't because the matrix is not in the right form, how do I get it into the right form (thanks for the page though!)

Looking for something else?

Not the answer you are looking for? Search for more explanations.