Suppose that aEG and a>4. What must the order of a be in the following cases? A) a^5=a^11 B) a^2011=a^2019 C) a^256=a^267

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Suppose that aEG and a>4. What must the order of a be in the following cases? A) a^5=a^11 B) a^2011=a^2019 C) a^256=a^267

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

This is for Cyclic Groups and Orders in Cyclic Groups
what deas aEG mean?
if I recall correctly, you are doing "clock" addition. but I could be mistaken

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Could it mean Equal or Greater?
it means that a is equivalent to the group G
I am sorry it means that a is an element of group G
Thanks
amistre i believe it can be done through "clock" addition
hmm.... what are the elements of group G?
the elements in g would have to be greater than 4 at least :)
right the order is larger than 4. The question wants me to find the order.

Not the answer you are looking for?

Search for more explanations.

Ask your own question