Find the slope of the tangent line to the curve 2(x^2+y^2)^2=25(x^2-y^2) at the point (-3,1).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the slope of the tangent line to the curve 2(x^2+y^2)^2=25(x^2-y^2) at the point (-3,1).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

the slope of the tangent line is given by the dy/dx. So this question is on implicit differentiation
yea i'm only having problems differentiatiog the right side of the equation
differentiating*

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

2(x^2+y^2)^2=25(x^2-y^2) Differentiate both sides with respect to x: 4(x^2 + y^2)[2x + 2y(dy/dx)] = 25[2x - 2y(dy/dx)]
Do you know how to continue from there?
uhmm not quite
but for the right side isn't it 25 (2x-y^2 y' +x^2-2y)
The slope of the tangent line is given by the dy/dx, and now the question is to determine the slope at (-3,1). So substitute x= -3 and y = 1 into the equation and then rearrange it to get the dy/dx. Would you like to try it first?
Why is it 25 (2x-y^2 y' +x^2-2y)?
multiplying 25 by the derivative of x^2-y^2+x^2- the derivative of y^2
the right side is only 25(x^2 - y^2). Differentiate it you have (d/dx)[25(x^2 - y^2)] = 25 (d/dx)[x^2 - y^2] = 25 [(d/dx)(x^2) - (d/dx)(y^2)] = 25 [2x - 2y (dy/dx)]
Sorry, i still don't understand how did you get yours...
you're right
So are you able to continue it now? :)
still stuck :(
ok, we have x=-3 and y=1, so substituting in we get 4(x^2 + y^2)[2x + 2y(dy/dx)] = 25[2x - 2y(dy/dx)] 4(9 + 1)[(-6) + 2(dy/dx)] = 25[(-6) - 2(dy/dx)] -240 + 80(dy/dx) = -150 - 50(dy/dx) 130 (dy/dx) = 90 dy/dx = 9/13
oh i thought i had to simplify until i find y' then i substitute in... oh well it makes sense though, thanks :)
you can also rearrange to find your y' then only you substitute. But I think in this case, it is easier to substitute to get your y'
you're welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question