anonymous
  • anonymous
what is the derivative of: 2 square x (not sure how to do) and (1-2x)/x^3 I get 3x^3(-1+2x) not sure if correct
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
sorry for the last one my answer is 3x^2(-1+2x)
anonymous
  • anonymous
u can rewrite square of x by x^1/2
anonymous
  • anonymous
2(sq.x)=2(x^1/2)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
multiply the exponent by the degree and subtract 1 from the exponent
anonymous
  • anonymous
\[2\sqrt{?}\] sorry I can't get it in corrrectly the ? should be the x
amistre64
  • amistre64
take the 2 out and derive sqrt(x); or x^(1/2) 1/2sqrt(x) now put the 2 back in: 2/2sqrt(x) = 1/sqrt(x)
amistre64
  • amistre64
(1-2x)/x^3 use quotient rule :) x^3(-2) - (1-2x)(3x^2) -------------------- x^6
anonymous
  • anonymous
\[\frac{d}{dx}[ \frac{(1-2x)}{x^3}] \] \[= \frac{d}{dx}[ (1-2x)x^{-3}]\] \[= (1-2x)\frac{d}{dx}[ x^{-3}] + x^{-3}\frac{d}{dx}[ (1-2x)]\] \[ = (1-2x)(-3x^{-4}) + x^{-3}(-2)\] \[ = -3x^{-4} + 6x^{-3} - 2x^{-3}\] \[ = \frac{4x-3}{x^4} \]
amistre64
  • amistre64
-2x^3 -3x^2+6x^3 4x^3 - 3x^2 (4x-3)x^2 -------- x^4 x^2 4x-3 ----- maybe?? x^4
anonymous
  • anonymous
thanks, i have to go for now , i will check back in about and hour
amistre64
  • amistre64
polpak did it good :) or we messed up toghter lol
anonymous
  • anonymous
I prefer to ignore the quotient rule and use product rule with a negative exponent.
amistre64
  • amistre64
potato<>potato :)
anonymous
  • anonymous
I thought potato = potato ;p
radar
  • radar
There is another way to look at mom. (1-2x)/x^3 can be rewritten to appear as (1-2x)(x^-3) \[(1-2x) *x ^{-3}=x ^{-3}-2x ^{-2}\]
radar
  • radar
This may be in a more familiar form you can now simply take the derivative to be: \[-3x ^{-4}+4x ^{-3}\] simplifying will obtain the results of polpak and amistre64

Looking for something else?

Not the answer you are looking for? Search for more explanations.