anonymous
  • anonymous
The directions say simplify. I didn't know how to type this so over means like a fraction and the brackets should cover both upper and lower numbers. {-3(a^2b^-1)^3}^-2 over {7(a^-5b^6)^-1}
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Is this it? \[\frac{[-3(a^2b^{-1})^3]^{-2}}{7(a^{-5}b^6)^{-1}}\]
anonymous
  • anonymous
No the brackets are over the bottom too so that the whole fraction is to the ^-2
anonymous
  • anonymous
Ok so \[[\frac{-3(a^2b^{-1})^{3}}{7(a^{-5}b^6)^{-1}}]^{-2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes that's it
anonymous
  • anonymous
So start with what's inside the brackets. Specifically work on the numerator. What do you have when you evaluate \[(a^2b^{-1})^3 = ?\]
anonymous
  • anonymous
(a^6b^-3)
anonymous
  • anonymous
Correct. Now the denominator.
anonymous
  • anonymous
(a^-5b^-6
anonymous
  • anonymous
Not quite.
anonymous
  • anonymous
(a^-5b^6)
anonymous
  • anonymous
Sorry I have to leave I'll have to come back to this later
anonymous
  • anonymous
\[(a^{-5}b^6)^{-1} = a^{\text{-5 * -1}}b^{\text{6*-1}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.