• anonymous
Here is a difficult one (for me at least): The number of min. of daylight per day, L(d), at 40 degrees north latitude is modeled by the function L(d) = 167.5sin[(2pi/366)(d-80)] + 731 where "d" is the number of days after the beginning of 1996. (For Jan 1, 1996, d=1 and for Dec 31, 1996, d=366). What is the average number of minuates of daylight in 1996? (Out of common sense I would say, 12 hours, but I'm sure it's more complicated than that....)
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
The average value of A*sin(Bx+C)+D over one period is D, the trig function goes up (+A) and down (-A) equal amounts over one period. The 2pi/366 means one cycle over one year. So it averages 731 minutes per day over one year. Your presumption was close. 731/60=12.18333333

Looking for something else?

Not the answer you are looking for? Search for more explanations.