find the derivative: (3x+1)^3/(1-3x)^4 I get the answer (3x+1)^2+(9x+21)/(1-3x)^5 is this correct?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the derivative: (3x+1)^3/(1-3x)^4 I get the answer (3x+1)^2+(9x+21)/(1-3x)^5 is this correct?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

the + between the 2 equations in the answer should not be there should be (3x+1)^2 (9x+21)/(1-3x)^5
[ 9 (1-3x)^4 (3x+1)^2 ] - [ -12 (3x+1)^3 (1-3x)^3 ] ---------------------------------------------- (1-3x)^8
i have that much

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

just working it out in me head :)
9bt' - (-12b't) 9bt' + 12b't ------------ = ------------ b^2 b^2 the (+) is good
you lost me on that one
we get 2 terms up top that are made up of multiplication. the first term has a (+)9 as a constant, and the 2nd term has a (-)12 as a constant. 9 --12 = 9+12
ok I got that. I guess the way it was written confussed me
probably, I was just trying to clean it up for my eyes :)
for simplicity: r = (1-3x) ; s = (3x+1) 3 r^3 s^2 (3r + 4s) ------------------ r^8
Let f(x) and g(x) be the Numerator and the Denominator of the given fraction respectively. The derivative of the fraction in terms of the above functions is:\[\frac{f'[x]}{g[x]}-\frac{f[x] g'[x]}{g[x]^2} \] Plug in the function values and their associated derivatives and you should get: \[\frac{9 (1+3 x)^2}{(1-3 x)^4}+\frac{12 (1+3 x)^3}{(1-3 x)^5} \]
rob: I dont follow that.....
might be right, but im lost on it :)
To start from the beginning. mom wants to know if the derivative of \[{(3x+1)^3 \over {(1-3x)^4}} \] is equal to: \[(3 x+1)^2+\frac{(9 x+21)}{(1-3 x)^5} \] The answer is no. The derivative is: \[\frac{9 (1+3 x)^2}{(1-3 x)^4}+\frac{12 (1+3 x)^3}{(1-3 x)^5} \] Let \[\frac{(3 x+1)^3}{(1-3 x)^4}=\frac{f(x)}{g(x)} \] The derivative of f(x)/g(x) is \[\frac{f'(x)}{g(x)}-\frac{f(x) g'(x)}{g(x)^2} \] \[f(x) = (1+3x)^3, f'(x) = 9(1+3x)^2 \] \[g(x) = (1-3x)^4, g'(x) = -12(1-3x)^3\] Plug in the values for f(x), f'(x), g(x) and g'(x) into the derivative of the f(x)/g(x) and one should end up with the equivalent of the derivative. \[\frac{9 (1+3 x)^2}{(1-3 x)^4}-\frac{(1+3 x)^3 \left(-12 (1-3 x)^3\right)}{\left((1-3 x)^4\right)^2} \] or \[\frac{9 (1+3 x)^2}{(1-3 x)^4}+\frac{12 (1+3 x)^3}{(1-3 x)^5} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question