anonymous
  • anonymous
What is the minimum number of bits required to represent +56,392 using 2’s complement form? conversion: Decimal to binary... grrr.. : / need help quick...
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
signed numbers excluding 0 = 2^5-1 digits including 0 = 2^5 digits
anonymous
  • anonymous
i got it thanks :)
anonymous
  • anonymous
just for binary, the number if bits is \[\lceil \log_{2}(56392) \rceil = 16\] For 2's compliment, add 1. (This matches the well known limits for 16-bit signed/unsigned values; maximum 16-bit unsigned = 2¹⁶-1 = 65535, maximum 16-bit signed = 2¹⁵-1 = 32767. 56392 can be expressed in a 16-bit unsigned value, but not in a 16-bit signed value.)

Looking for something else?

Not the answer you are looking for? Search for more explanations.