Evaluate the double integral D4x−4ydA , D= is the quarter circle in the first quadrant with center at the origin and radius 5

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Evaluate the double integral D4x−4ydA , D= is the quarter circle in the first quadrant with center at the origin and radius 5

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You can do this a couple of ways. You can stay in the rectilinear system, or shift into polar coordinates. In the polar system, you can make the following transformations,\[x=r \cos \theta, y = r \sin \theta\]and\[dA=r dr d \theta\]Given the description of your domain, you're integrating over a radial distance 0 to 5, and your angle swept is from 0 to pi/2. Your integral is then,\[\int\limits_{0}^{r}\int\limits_{0}^{\pi/2}(4r \cos \theta - 4 r \sin \theta )r dr d \theta \]\[=4\int\limits_{0}^{r=5}\int\limits_{0}^{\theta = \frac{\pi}{2}}r^2(\cos \theta - \sin \theta) d \theta dr\]\[=4\int\limits_{0}^{5}r^2dr \int\limits_{0}^{\pi/2}\cos \theta - \sin \theta d \theta\]\[=4\int\limits_{0}^{5}r^2dr \left[ \sin \theta + \cos \theta \right]_0^{\pi/2}=4\int\limits_{0}^{5}r^2dr (0)=0\]
You get the same answer sticking to the rectilinear system. If you need help with that, let me know.
cheers

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

np

Not the answer you are looking for?

Search for more explanations.

Ask your own question