Can someone tell me if this is right?? finding the slant height.. i got 473.96

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Can someone tell me if this is right?? finding the slant height.. i got 473.96

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
what does it mean by slant height? the edge or the face?
idk.. it just says find the slant height of the regular pyramid

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i googled it and it says slant height is the distance up the face. that distance is equal to sqrt(15^2 + 6^2) sqrt(225 + 36) = sqrt(261) right?
16.155 is what I get.....
okay.. i got 17.2
the slant height is just the hypotenuse of he right triangle that is formed by 15 and 12/2
I agree with Amiestre64
dont let the hero title fool ya..... im just an idiot in disguise :)
i got 2 hours to write up a paragraph on how well Johnson and Johnson company would be as a stock purchase...... procrastinating :)
Indeed. \[15^2 + 6^2 = \text{Slant height}^2\] \[ \rightarrow \text{Slant height} = \sqrt{15^2 + 6^2} = \sqrt{225+36} = \sqrt{261} \approx 16.1555\]
slant height for this one
1 Attachment
Employ the same technique.
is that a 13 or an 18?
18
The 'legs' of the hypotenuse are 5 an 18
sqrt(5^2 + 13^2) then sqrt(25 + 196)
er.... 169 :)
1 Attachment
........ugh, maybe I do need to write that paragraph lol
18^2 not 13^2
8 and 1 are your legs there
where did the one come from
since the height of thing comes down to the middle of a side, the length you use for the bottom leg is just half of a side....2/2 = 1
oh
so for this one slant height is 18.68
1 Attachment
this one slant height = 8.06
1 Attachment
I get 8.246 for that last one.
Oh wait no. You're right.
8.06
it would be ft ^2 right
No. You have \[\sqrt{ft^2 + ft^2} \] So it will be in ft.
ok

Not the answer you are looking for?

Search for more explanations.

Ask your own question