anonymous
  • anonymous
3. A video store rents 800 videos per week at $4/video. They did some research and found that for every $0.50 increase in rental price, they will rent 50 less videos. a) Develop an equation that models the revenue, R, and number of price increases x. b) What is the maximum revenue they can make c) How much should they charge per video rental to maximise the revenue? d) How many videos will they rent for maximum revenue e) What will be their revenue if the rent for each video is $10 each?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
the equation is Revenue = Price * Units Price = (4 - .5x) Units = (800 - 50x) So when x increases price drops by increments of .5 and Units sold drops by 50 Multiply them and you have your equation Revenue = (4 - .5x)(800 - 50x)
anonymous
  • anonymous
Price should be (4+.5x)
anonymous
  • anonymous
To find where revenue is most take the derivative R(x) = -25x^2 +200x + 3200 R'(x) = -50x + 200 0 = -50x + 200 4 = x, so max at 4

Looking for something else?

Not the answer you are looking for? Search for more explanations.