• anonymous
Use Lagrange multipliers to find the maximum or minimum values of f(x,y) subject to the constraint. f(x,y)=3x-2y, x^2+2y^2=99
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Solution 1 (without multipliers): If you look at f you can see that its graph is a plane through the origin and grows with the highest rate in the direction of the gradient vector\[\nabla f(x,y)=(3,-2)\] so you just have to go to the constraint (which is an origin centered circle with radius square root of 99) in that direction. This right point to the maximum is \[\sqrt{99}(\frac{3}{\sqrt{13}},\frac{-2}{\sqrt{13}})\] where the value of f is \[\sqrt{99}(\frac{9}{\sqrt{13}}+\frac{4}{\sqrt{13}})=\sqrt{99\cdot 13}\approx 35.87\] By symmetry you get the minimum is at point \[\sqrt{99}(\frac{-3}{\sqrt{13}},\frac{2}{\sqrt{13}})\] where f is equal to -35.87. Solution 2 (using Lagrange multipliers):The function is \[f(x,y,)=3x-2y\] and the constraint is \[g(x,y)=x^2+y^2=99.\] Define the auxiliary function \[\Lambda(x,y,\lambda)=f(x,y)+\lambda(g(x,y)-99)=3x-2y+\lambda(x^2+y^2-99).\] The system of linear equation formed by the partial derivatives of Lambda: \[\begin{array}{rcl} \frac{\partial\Lambda}{\partial x}=3+2\lambda x&=&0\\ \frac{\partial\Lambda}{\partial y}=-2+2\lambda y&=&0\\ \frac{\partial\Lambda}{\partial \lambda}=x^2+y^2-99&=&0. \end{array}\] It has the solution: \[x=-3\frac{\sqrt{99}}{\sqrt{13}},\quad y=2\frac{\sqrt{99}}{\sqrt{13}},\quad \lambda=\frac{1}{2}\frac{\sqrt{13}}{\sqrt{99}}\] and \[x=3\frac{\sqrt{99}}{\sqrt{13}},\quad y=-2\frac{\sqrt{99}}{\sqrt{13}},\quad \lambda=-\frac{1}{2}\frac{\sqrt{13}}{\sqrt{99}}\] The first one gives the minimum and the second one the gives the maximum of the function subject to the given constraint.
1 Attachment
  • anonymous
Oh... now i see it's 2y^2 at the constraint, so no big deal you should do almost the same but now solve the system of equation 3+2λx=0 −2+4λy=0 x^2+2y^2−99=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.