The half-life of a certain radioactive element is 10 years. How much of a 20g sample will be left after 8 years? (Hint: …first …find the decay constant.)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The half-life of a certain radioactive element is 10 years. How much of a 20g sample will be left after 8 years? (Hint: …first …find the decay constant.)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[ N(t) = N_0 e^{-\lambda t}. \, \] use this, substitute the values in, and you will get the decay constant
I already used 10 = ln(2) / k ---> ln(2) / 10 = k. But then what?
Then I got A = 20e^((ln(2)/10)10). What's next? where do the 8 years come in?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ok, the amount of radioactive element left after 8 years will be amount remained =20/(2(8/10)) =12.5g
in my oppinion
where'd you get the 20 from?
oh yea i see sorry.
ok, what does half-life mean in the first pace? it is 10 years, meaning that after 10 years the amount will become smaler by a factor of two, that is we need to divide it by 2, but since we only wait 8 years, which is 8/10 or 0.8 of the half life,we have to multiply the half life by the ratio 0.8 to 1 so, it is 2*0.8=1.6, so after 8 years, the sample reduses by a factor of 1.6
Use the equation posted at the top and use t=8, k = ln(2)/10, N_0 = 20 Answer should be around 11.49 rounded

Not the answer you are looking for?

Search for more explanations.

Ask your own question