anonymous
  • anonymous
I need help! the square root of 3x +1 - the square root x-1=2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
it would help out alot in understanding your question if you would use paratnthesis to indicate what would be "under" the radical. like this: sqrt(3x-1) - sqrt(x) -1 = 0 otherwise, we dont know what your problem really is......
anonymous
  • anonymous
ok
anonymous
  • anonymous
sqrt(3x+1)-sqrt(x-1)=2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
solutions are 1,5 dont know how to get there
anonymous
  • anonymous
\[\sqrt{3x+1}-\sqrt{x-1}=2\quad /()^2\] \[3x+1+(x-1)-2\sqrt{(3x+1)(x-1)}=4\] \[4x-2\sqrt{(3x+1)(x-1)}=4\qquad /-4x\] \[-2\sqrt{(3x+1)(x-1)}=4-4x\qquad /:(-2)\] \[\sqrt{(3x+1)(x-1)}=-2+2x\qquad /()^2\] \[(3x+1)(x-1)=(-2+2x)^2\] \[3x^2-2x-1=4+4x^2-8x\qquad /-3x^2+2x+1\] \[0=x^2-6x+5\] \[0=(x-1)(x-5)\] Solutions: \[x_1=1,\quad x_2=5\quad\checkmark\]
amistre64
  • amistre64
isolate a sqrt :) sqrt(x-1) = 2 -sqrt(3x+1) now square both side
amistre64
  • amistre64
and remember to watch your signs.... i appear to have dropped one on accident
anonymous
  • anonymous
thank you I am trying to comprehend all of this

Looking for something else?

Not the answer you are looking for? Search for more explanations.