anonymous
  • anonymous
find an orthonormal basis of the plane x1-8x2-x3=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You just pick one vector which is in the plane, for example (1,0,1), then scale it to unit length, so you get \[e_1(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}).\] To find e_2 use Gram-Schmidt method to another vector, for example v=(0,1/8,-1). \[e_2=v-\frac{e_1\cdot v}{e_1\cdot e_1} e_1=(0,1/8,-1)-(-1/\sqrt{2})(1/\sqrt{2},0,1/\sqrt{2})\] which is equal to \[e_2=(1/2,1/8,-1/2)\] after scaling to unit length you'll get \[\hat{e}_2=\frac{\sqrt{64}}{\sqrt{33}}(1/2,1/8,-1/2)\] e_1 and \hat{e}_2 form an orthonormal basis to the plane.

Looking for something else?

Not the answer you are looking for? Search for more explanations.