Approximate the sum of the series correct to four decimal places. sum n=1,infinity ((-1)^(n-1) n^2)/(10^n) I know how to finish the equation once I have the number I need to go up to, but I don't know how to find that number, can anyone help?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Approximate the sum of the series correct to four decimal places. sum n=1,infinity ((-1)^(n-1) n^2)/(10^n) I know how to finish the equation once I have the number I need to go up to, but I don't know how to find that number, can anyone help?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You can do the same thing with this one, just solve another equality without the (-1)^(n-1) n^2/(10^n)<0.0001 This should give you the number of terms
It doesn't give me an error though
The error of the approximation?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

It wants me to find the sum.
I think the easiest way to do this one is write out the terms, maybe the first 3 or 4. and then find the first term that is less than 0.0001. Add all of the terms before this term and you get the approximate sum correct to 0.0001
(cause i just realized in the equality was like 10^n which you can't really solve for easily )

Not the answer you are looking for?

Search for more explanations.

Ask your own question