• anonymous
Two small nonconducting spheres have a total charge of 90.0 micro Coulombs. (a) When placed 1.16 m apart, the force each exerts on the other is 12.0 N and is repulsive. What is the charge on each? (b) What if the force were attractive? r = 1.16m F = 12.0 N k = (F x r^2)/(Q1 x k) = Q2, (F x r^2)/(Q2 x k) = Q1 I know that I'm supposed to find Q1 and Q2, but I can only find one in terms of the other. I have Q2 = (1.796 x 10^(-9) C^2)/Q1, but that's as far as I can get. Any pointers?
  • katieb
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
k = [8.99 \times 10^{9} N \times m ^{2}/C ^{2}\]
  • anonymous
\[Q_1 + Q_2 = Q_{tot}\] \[F_{el} = {{k Q_1Q_2} \over {d^2}}\] \[Q_1 = {d^2 F_{el} \over k Q_2}\] \[{d^2 F_{el} \over {k Q_2}} + Q_2 = Q_{tot}\] Multiplying by Q2, \[Q_2 ^2 + ({d^2 F_{el} \over k})Q_2 - Q_{tot} = 0\] \[\Delta = ({d^2.F_{el} \over k})^2 + 4Q_{tot}\] \[Q_2 = {{({d^2F_{el} \over k}) \pm \sqrt{\Delta}} \over 2}\] There's gonna be a lot of work when really substituting the values...

Looking for something else?

Not the answer you are looking for? Search for more explanations.