find the domain and range of the given function y(t)=3t^2-2t+1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the domain and range of the given function y(t)=3t^2-2t+1

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Unless a domain is given explicitly with a function, we assume the domain is the set of all t (here) for which the function is defined (i.e. for which the function 'works'). In this case, you can take any value for t, plug it in, and the function will work. Your domain is therefore,\[D=\left\{ t |t \in \mathbb{R} \right\}\] (read, "The set of all t, such that t is an element of the real numbers). The range is the set of all y-values that your function will take. If you plot this function, you'll see that it's a parabola. This parabola will have a minimum value at some point, and then extend upwards to infinity from there. Your range, therefore, won't be all the real numbers, unlike your domain. To find the minimum, you can either complete the square and find the t-value that makes the function minimal, or use calculus to find that the point at which f(t) is minimal occurs at \[t=\frac{1}{3}\]and so\[f(\frac{1}{2})=3(\frac{1}{2})^2-2(\frac{1}{2})+1=\frac{3}{4}\]The function minimum is therefore\[\frac{3}{4}\]The function can take values above this value, and at this value, but not below. So your function's range is\[R=\left\{ f(t)|f(t) \in \mathbb{R}, f(t) \gt \frac{3}{4} \right\}\]which is read, "The range of f is the set of all values f(t) such that f(t) is real and f(t) is greater than 3/4." If you need clarification on anything, please let me know :)
thanx but i didnt quite get it though

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question